Exercise 40

Find the work done by the force field $\mathbf{F}(x, y)=x^{2} \mathbf{i}+y e^{x} \mathbf{j}$ on a particle that moves along the parabola $x=y^{2}+1$ from $(1,0)$ to $(2,1)$.

Solution

Parameterize the path that the particle moves on by $x=t^{2}+1, y=t, z=0$ so that

$$
\mathbf{r}(t)=\left\langle t^{2}+1, t, 0\right\rangle, \quad 0 \leq t \leq 1
$$

Calculate the line integral of the force field over the parabolic path to find the work done.

$$
\begin{aligned}
W & =\int_{C} \mathbf{F} \cdot d \mathbf{r} \\
& =\int_{0}^{1} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t \\
& =\int_{0}^{1}\left\langle\left(t^{2}+1\right)^{2}, t e^{t^{2}+1}, 0\right\rangle \cdot\langle 2 t, 1,0\rangle d t \\
& =\int_{0}^{1}\left[\left(t^{2}+1\right)^{2}(2 t)+t e^{t^{2}+1}(1)+(0)(0)\right] d t \\
& =\int_{0}^{1}\left[2 t\left(t^{2}+1\right)^{2}+t e^{t^{2}+1}\right] d t \\
& =2 \int_{0}^{1} t\left(t^{2}+1\right)^{2} d t+\int_{0}^{1} t e^{t^{2}+1} d t
\end{aligned}
$$

Make the following substitution in both integrals.

$$
\begin{aligned}
u & =t^{2}+1 \\
d u & =2 t d t \quad \rightarrow \quad \frac{d u}{2}=t d t
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
W & =2 \int_{0^{2}+1}^{1^{2}+1} u^{2}\left(\frac{d u}{2}\right)+\int_{0^{2}+1}^{1^{2}+1} e^{u}\left(\frac{d u}{2}\right) \\
& =\int_{1}^{2} u^{2} d u+\frac{1}{2} \int_{1}^{2} e^{u} d u \\
& =\left.\left(\frac{u^{3}}{3}\right)\right|_{1} ^{2}+\left.\frac{1}{2}\left(e^{u}\right)\right|_{1} ^{2} \\
& =\left(\frac{2^{3}}{3}-\frac{1^{3}}{3}\right)+\frac{1}{2}\left(e^{2}-e^{1}\right) \\
& =\frac{7}{3}+\frac{e}{2}(e-1) .
\end{aligned}
$$

